Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19443, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945788

RESUMEN

The ordered porous frameworks like MOFs and COFs are generally constructed using the monomers through distinctive metal-coordinated and covalent linkages. Meanwhile, the inter-structural transition between each class of these porous materials is an under-explored research area. However, such altered frameworks are expected to have exciting features compared to their pristine versions. Herein, we have demonstrated a chemical-induction phase-engineering strategy to transform a two-dimensional conjugated Cu-based SA-MOF (Cu-Tp) into 2D-COFs (Cu-TpCOFs). The structural phase transition offered in-situ pore size engineering from 1.1 nm to 1.5-2.0 nm. Moreover, the Cu-TpCOFs showed uniform and low percentage-doped (~ 1-1.5%) metal distribution and improved crystallinity, porosity, and stability compared to the parent Cu-Tp MOF. The construction of a framework from another framework with new linkages opens interesting opportunities for phase-engineering.

2.
Biol Reprod ; 108(6): 854-865, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-36917225

RESUMEN

Organoid technology has provided a unique opportunity to study early human development and decipher various steps involved in the pathogenesis of disease. The technology is already used in clinics to improve human patient outcomes. However, limited knowledge of the methodologies required to establish organoid culture systems in domestic animals has slowed the advancement and application of organoid technology in veterinary medicine. This is particularly true for the field of reproduction and the application of assisted reproductive technologies (ART). Here, we have developed a platform to grow oviductal organoids from five domestic species-bovine, porcine, equine, feline, and canine. The organoids were grown progressively from single cells derived from the enzymatic digestion of freshly collected infundibular/fimbrial samples. The addition of WNT, TGFß, BMP, ROCK, and Notch signaling pathway activators or inhibitors to the organoid culture medium suggested remarkable conservation of the molecular signals involved in oviductal epithelial development and differentiation across species. The gross morphology of organoids from all the domestic species was initially similar. However, some differences in size, complexity, and growth rate were subsequently observed and described. After 21 days, well-defined and synchronized motile ciliated cells were observed in organoids. Histopathologically, oviductal organoids mimicked their respective native tissue. In summary, we have carried out a detailed cross-species comparison of oviductal organoids, which would be valuable in advancing our knowledge of oviduct physiology and, potentially, help in increasing the success of ART.


Asunto(s)
Organoides , Mascotas , Humanos , Femenino , Animales , Gatos , Bovinos , Caballos , Perros , Porcinos , Granjas , Trompas Uterinas , Diferenciación Celular
3.
Biol Rev Camb Philos Soc ; 98(2): 603-622, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36412227

RESUMEN

Herein, we compare the different experimental regimes used to induce testicular heat stress and summarise their impact on sperm production and male fertility. Irrespective of the protocol used, scrotal heat stress causes loss of sperm production. This is first seen 1-2 weeks post heat stress, peaking 4-5 weeks thereafter. The higher the temperature, or the longer the duration of heat, the more pronounced germ cell loss becomes, within extreme cases this leads to azoospermia. The second, and often underappreciated impact of testicular hyperthermia is the production of poor-quality spermatozoa. Typically, those cells that survive hyperthermia develop into morphologically abnormal and poorly motile spermatozoa. While both apoptotic and non-apoptotic pathways are known to contribute to hyperthermic germ cell loss, the mechanisms leading to formation of poor-quality sperm remain unclear. Mechanistically, it is unlikely that testicular hyperthermia affects messenger RNA (mRNA) abundance, as a comparison of four different mammalian studies shows no consistent single gene changes. Using available evidence, we propose two novel models to explain how testicular hyperthermia impairs sperm formation. Our first model suggests aberrant alternative splicing, while the second model proposes a loss of RNA repression. Importantly, neither model requires consistent changes in RNA species.


Asunto(s)
Semen , Espermatogénesis , Animales , Masculino , Testículo , Espermatozoides , Células Germinativas , Respuesta al Choque Térmico , ARN , Mamíferos
4.
Sci Total Environ ; 859(Pt 1): 160140, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36379328

RESUMEN

Carbon dioxide (CO2) is the top contributor to global warming. On the other, soot particles formed during fuel combustion and released into the atmosphere are harmful and also contribute to global warming. It would therefore be highly advantageous to capture soot and make use of it as a feedstock to synthesize carbon-based materials for applications such as carbon dioxide adsorption. In this work, flame-made diesel soot nanoparticles were used to produce a variety of activated carbons by combined oxidative treatment with hydrogen peroxide (H2O2) and potassium hydroxide (KOH), and their performance towards CO2 adsorption was evaluated. The effect of the chemical activation of soot with H2O2 for different reaction times and with KOH on the physicochemical properties of the activated carbons was investigated and compared to fresh soot. Interestingly, hollow aggregates of carbonaceous nanoparticles of a high interplanar distance, reduced polycyclic aromatic hydrocarbons (PAH) size, shorter PAH stacks, mesoporous structure, and a high content of oxygen functionalities along with other structural defects in PAHs were obtained in the synthesized activated carbons. Among the various analysis techniques employed, Raman spectroscopy indicated that the ID/IG ratio in soot decreased after simultaneous chemical treatment, though it did not indicate any enhancement in the graphitic character since the carbonyl and carboxylic containing PAHs and monovacancies (which cause defects in PAHs) also contribute to the increase in the intensity of the graphitic band. The activated carbons possessed promising CO2 adsorption capacities, adsorption kinetics and CO2/N2 selectivity. For example, one of the activated carbons, following H2O2 treatment for 9 h and a subsequent KOH activation, exhibited a CO2 adsorption capacity of 1.78 mmol/g at 1 bar and 25 °C, representing an increase of 161 % in capacity as compared to fresh soot. Hollow aggregates of carbonaceous nanoparticles consisting of shorter PAHs with a larger number of defects led to enhanced CO2 adsorption rate and CO2/N2 selectivity on activated carbons.


Asunto(s)
Dióxido de Carbono , Hidrocarburos Policíclicos Aromáticos , Dióxido de Carbono/análisis , Hollín , Peróxido de Hidrógeno/análisis , Adsorción , Carbón Orgánico/química , Hidrocarburos Policíclicos Aromáticos/análisis
5.
Sci Rep ; 12(1): 15322, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-36097009

RESUMEN

Using semen data from 1271 ejaculates (79 different bulls, 11 different breeds) we have investigated the variability of semen quality in cattle living in sub-tropical conditions. Modelling shows definitive evidence of seasonal variation. Semen quality from the same bulls had a 90% "pass rate" for cryopreservation purposes in winter, dropping to less than 50% in summer. Notably, individual bulls could be classified as either "heat-tolerant" (produce good quality spermatozoa all year regardless of temperature) or "heat-sensitive" (only produce good quality sperm in summer). Nominal logistic regression demonstrated when temperatures reach 30.5 °C, 40% of heat-sensitive bulls fail a semen analysis 17 days later. At 34 °C, the proportion of bulls failing reached 63%. Ratifying this, the purposeful heating of bulls to 40 °C for 12 h showed that individual animals had different degrees of heat-sensitivity. Using historical temperature data, we then modelled how many days/decade bulls would be subject to heat-events. Beginning from 1939 to 1949, on average, the area in which bulls were kept recorded 19, 7 and 1 day over 38 °C, 39 °C and 40 °C respectively. This number steadily increases and of last decade (2010-2010), the numbers of days per decade over 38 °C, 39 °C and 40 °C jumped to a staggering 75, 39 and 15 respectively. These data show the urgent need to identify heat-tolerant bulls as future sires. Such variation likely explains why the veterinary bull breeding test often fails to accurately predict bull breeding potential.


Asunto(s)
Análisis de Semen , Semen , Animales , Bovinos , Clima , Calor , Masculino , Estaciones del Año , Análisis de Semen/veterinaria
6.
Cell Rep Med ; 3(9): 100738, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36103879

RESUMEN

Endometrial cancer is one of the most frequently diagnosed gynecological cancers worldwide, and its prevalence has increased by more than 50% over the last two decades. Despite the understanding of the major signaling pathways driving the growth and metastasis of endometrial cancer, clinical trials targeting these signals have reported poor outcomes. The heterogeneous nature of endometrial cancer is suspected to be one of the key reasons for the failure of targeted therapies. In this study, we perform a sequential window acquisition of all theoretical fragment ion spectra (SWATH)-based comparative proteomic analysis of 63 tumor biopsies collected from 20 patients and define differences in protein signature in multiple regions of the same tumor. We develop organoids from multiple biopsies collected from the same tumor and show that organoids capture heterogeneity in endometrial cancer growth. Overall, using quantitative proteomics and patient-derived organoids, we define the heterogeneous nature of endometrial cancer within a patient's tumor.


Asunto(s)
Neoplasias Endometriales , Proteómica , Neoplasias Endometriales/tratamiento farmacológico , Femenino , Humanos , Organoides/patología
7.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145035

RESUMEN

In this study, we examine the effect of integrating different carbon nanostructures (carbon nanotubes, CNTs, graphene nanoplatelets, GNPs) into Ni- and Ni-W-based bi-functional catalysts for hydrocracking of heptane performed at 400 °C. The effect of varying the SiO2/Al2O3 ratio of the zeolite Y support (between 5 and 30) on the heptane conversion is also studied. The results show that the activity, in terms of heptane conversion, followed the order CNT/Ni-ZY5 (92%) > GNP/Ni-ZY5 (89%) > CNT/Ni-W-ZY30 (86%) > GNP/Ni-W-ZY30 (85%) > CNT/Ni-ZY30 (84%) > GNP/Ni-ZY30 (83%). Thus, the CNT-based catalysts exhibited slightly higher heptane conversion as compared to the GNP-based ones. Furthermore, bimetallic (Ni-W) catalysts possessed higher BET surface areas (725 m2/g for CNT/Ni-W-ZY30 and 612 m2/g for CNT/Ni-ZY30) and exhibited enhanced hydrocracking activity as compared to the monometallic (Ni) catalyst with the same zeolite support and type of carbon structure. It was also shown that CNT-based catalysts possessed higher regeneration capability than their GNP-based counterparts due to the slightly higher thermal stability of the CVD-grown CNTs.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35820019

RESUMEN

Doped ceria-based metal oxides are widely used as supports and stand-alone catalysts in reactions where CO2 is involved. Thus, it is important to understand how to tailor their CO2 adsorption behavior. In this work, steering the CO2 activation behavior of Ce-La-Cu-O ternary oxide surfaces through the combined effect of chemical and mechanical strain was thoroughly examined using both experimental and ab initio modeling approaches. Doping with aliovalent metal cations (La3+ or La3+/Cu2+) and post-synthetic ball milling were considered as the origin of the chemical and mechanical strain of CeO2, respectively. Experimentally, microwave-assisted reflux-prepared Ce-La-Cu-O ternary oxides were imposed into mechanical forces to tune the structure, redox ability, defects, and CO2 surface adsorption properties; the latter were used as key descriptors. The purpose was to decouple the combined effect of the chemical strain (εC) and mechanical strain (εM) on the modification of the Ce-La-Cu-O surface reactivity toward CO2 activation. During the ab initio calculations, the stability (energy of formation, EOvf) of different configurations of oxygen vacant sites (Ov) was assessed under biaxial tensile strain (ε > 0) and compressive strain (ε < 0), whereas the CO2-philicity of the surface was assessed at different levels of the imposed mechanical strain. The EOvf values were found to decrease with increasing tensile strain. The Ce-La-Cu-O(111) surface exhibited the lowest EOvf values for the single subsurface sites, implying that Ov may occur spontaneously upon Cu addition. The mobility of the surface and bulk oxygen anions in the lattice contributing to the Ov population was measured using 16O/18O transient isothermal isotopic exchange experiments; the maximum in the dynamic rate of 16O18O formation, Rmax(16O18O), was 13.1 and 8.5 µmol g-1 s-1 for pristine (chemically strained) and dry ball-milled (chemically and mechanically strained) oxides, respectively. The CO2 activation pathway (redox vs associative) was experimentally probed using in situ diffuse reflectance infrared Fourier transform spectroscopy. It was demonstrated that the mechanical strain increased up to 6 times the CO2 adsorption sites, though reducing their thermal stability. This result supports the mechanical actuation of the "carbonate"-bound species; the latter was in agreement with the density functional theory (DFT)-calculated C-O bond lengths and O-C-O angles. Ab initio studies shed light on the CO2 adsorption energy (Eads), suggesting a covalent bonding which is enhanced in the presence of doping and under tensile strain. Bader charge analysis probed the adsorbate/surface charge distribution and illustrated that CO2 interacts with the dual sites (acidic and basic ones) on the surface, leading to the formation of bidentate carbonate species. Density of states (DOS) studies revealed a significant Eg drop in the presence of double Ov and compressive strain, a finding with design implications in covalent type of interactions. To bridge this study with industrially important catalytic applications, Ni-supported catalysts were prepared using pristine and ball-milled oxides and evaluated for the dry reforming of methane reaction. Ball milling was found to induce modification of the metal-support interface and Ni catalyst reducibility, thus leading to an increase in the CH4 and CO2 conversions. This study opens new possibilities to manipulate the CO2 activation for a portfolio of heterogeneous reactions.

9.
Ultramicroscopy ; 239: 113546, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35598347

RESUMEN

Prior to the recent developments of high-speed atomic force microscopy (HS-AFM), atomic force microscopy (AFM) was not favoured by industry because of its complexity and slow image acquisition speed which may lead to poor resolution and unreliable quantified results. HS-AFM, however, is capable of imaging several frames per second and thus capable of quick, accurate, and representative measurements - ideal for quality control applications. This study demonstrates HS-AFM as a useful quality control tool by assessing the roughness of silicon carbide (SiC) monofilament fibres as a challenging example of how large HS-AFM datasets in excess of 200 images can be collected and used for reliable quantification. A comparison of two roughness methods utilising either area or line roughness parameters has been conducted, where very little difference was noted apart from the lower statistical significance of line roughness. The roughness of ten SiC fibre samples was measured with Sa (the area equivalent to Ra) roughness results varying from 34 nm to 53 nm. The small measurement uncertainties, as a result of the large number of measurements, meant that the roughness results were distinguishable from one another even though all ten SiC fibres were very similar to each other, having been produced by the same manufacturer and process. The robustness of the methods have been tested by repeating the analysis for each fibre, and in the one instance where the repeated data did not agree, a further dataset proved which one was incorrect, illustrating how industry can use these methods for quality control. A methodology of identifying the minimum number of frames required to account for sample variability, as well as recommendations on how to use HS-AFM for quantitative measurements in quality control, are also included to enable easy reproduction and adaptation of this work for other samples and measurements.


Asunto(s)
Microscopía de Fuerza Atómica , Microscopía de Fuerza Atómica/métodos , Control de Calidad
10.
Reprod Fertil ; 3(1): R1-R18, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35350651

RESUMEN

Lipids are dynamic biological molecules that play key roles in metabolism, inflammation, cell signalling and structure. They are biologically significant in the physiology of conception and reproduction. Many of the mechanisms surrounding equine conception and the early feto-maternal dialogue are yet to be understood at a biochemical level. Recently, lipidomic technologies have advanced considerably and analytical strategies have been enhanced and diversified. Consequently, in-depth lipidomic exploration now has the potential to reveal new lipid biomarkers and biochemical relationships that improve our understanding of the processes leading to efficient and successful reproduction. This review considers the role of lipids in conception and establishment of pregnancy, providing new insights into the enigmatic pathways governing early reproductive physiology of the mare. Lay summary: This paper discusses the role that lipids play in the very early stages of pregnancy in the mare. Lipids are microscopic non-soluble molecules that are important components of living cells. The manuscript discusses how lipids influence the reproductive cycle of mares, including ovulation and the detailed biological process of becoming pregnant. It explains how lipids are identified in a laboratory setting with a newly developing technology known as 'lipodomics'. The technology may lead to a more detailed understanding of how mares become pregnant. The focus of the paper is on mare reproduction, but it also draws on similarities with reproduction in other mammals. Remarkably there are gaps in much of our knowledge about the finer details of pregnancy in the horse, and the paper summarises what we already know about lipids, highlighting areas for further research.


Asunto(s)
Fertilización , Lipidómica , Animales , Femenino , Caballos , Lípidos , Mamíferos , Embarazo , Reproducción
11.
Nanoscale ; 14(7): 2605-2616, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35129185

RESUMEN

The operational stability of organic-inorganic halide perovskite based solar cells is a challenge for widespread commercial adoption. The mobility of ionic species is a key contributor to perovskite instability since ion migration can lead to unfavourable changes in the crystal lattice and ultimately destabilisation of the perovskite phase. Here we study the nanoscale early-stage degradation of mixed-halide mixed-cation perovskite films under operation-like conditions using electrical scanning probe microscopy to investigate the formation of surface nanograin defects. We identify the nanograins as lead iodide and study their formation in ambient and inert environments with various optical, thermal, and electrical stress conditions in order to elucidate the different underlying degradation mechanisms. We find that the intrinsic instability is related to the polycrystalline morphology, where electrical bias stress leads to the build-up of charge at grain boundaries and lateral space charge gradients that destabilise the local perovskite lattice facilitating escape of the organic cation. This mechanism is accelerated by enhanced ionic mobility under optical excitation. Our findings highlight the importance of inhibiting the formation of local charge imbalance, either through compositions preventing ionic redistribution or local grain boundary passivation, in order to extend operational stability in perovskite photovoltaics.

12.
Biol Reprod ; 106(4): 741-755, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35024820

RESUMEN

Stallions experience transient fluctuations in fertility throughout the breeding season. Considering pregnancy diagnoses cannot be ascertained until ~14 days postbreeding, the timely detection of decreases in stallion fertility would enhance industry economic and welfare outcomes. Therefore, this study aimed to identify the proteomic signatures reflective of short-term fertility fluctuations and to determine the biological mechanisms governing such differences. Using liquid chromatography-mass spectrometry (LC-MS/MS), we compared the proteomic profile of semen samples collected from commercially "fertile" stallions, during high- and low-fertility periods. A total of 1702 proteins were identified, of which, 38 showed a significant change in abundance (P ≤ 0.05). Assessment of intra- and interstallion variability revealed that caseins (namely κ-, α-S1-, and α-S2-casein) were significantly more abundant during "high-fertility" periods, while several epididymal, and seminal plasma proteins (chiefly, epididymal sperm binding protein 1 [ELSPbP1], horse seminal plasma protein 1 [HSP-1], and clusterin), were significantly more abundant during "low-fertility" periods. We hypothesized that an increased abundance of caseins offers greater protection from potentially harmful seminal plasma proteins, thereby preserving cell functionality and fertility. In vitro exposure of spermatozoa to casein resulted in decreased levels of lipid scrambling (Merocyanine 540), higher abundance of sperm-bound caseins (α-S1-, α-S2-, and κ-casein), and lower abundance of sperm-bound HSP-1 (P ≤ 0.05). This study demonstrates key pathways governing short-term fertility fluctuations in the stallion, thereby providing a platform to develop robust, fertility assessment strategies into the future.


Asunto(s)
Caseínas , Infertilidad , Animales , Caseínas/metabolismo , Cromatografía Liquida , Femenino , Caballos , Infertilidad/metabolismo , Masculino , Embarazo , Proteómica , Proteínas de Plasma Seminal/metabolismo , Espermatozoides/metabolismo , Espectrometría de Masas en Tándem
13.
Nanomaterials (Basel) ; 11(9)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34578756

RESUMEN

Highly active metal-free mesoporous phosphated silica was synthesized by a two-step process and used as a SO2 hydrogenation catalyst. With the assistance of a microwave, MCM-41 was obtained within a 10 min heating process at 180 °C, then a low ratio of P precursor was incorporated into the mesoporous silica matrix by a phosphorization step, which was accomplished in oleylamine with trioctylphosphine at 350 °C for 2 h. For benchmarking, the SiO2 sample without P precursor insertion and the sample with P precursor insertion into the calcined SiO2 were also prepared. From the microstructural analysis, it was found that the presence of CTAB surfactant was important for the incorporation of active P species, thus forming a highly dispersed, ultrafine (uf) phosphate silica, (Si-P) catalyst. The above approach led to the promising catalytic performance of uf-P@meso-SiO2 in the selective hydrogenation of SO2 to H2S; the latter reaction is very important in sulfur-containing gas purification. In particular, uf-P@meso-SiO2 exhibited activity at the temperature range between 150 and 280 °C, especially SO2 conversion of 94% and H2S selectivity of 52% at 220 °C. The importance of the CTAB surfactant can be found in stabilizing the high dispersion of ultrafine P-related species (phosphates). Intrinsic characteristics of the materials were studied using XRD, FTIR, EDX, N2 adsorption/desorption, TEM, and XPS to reveal the structure of the above catalysts.

14.
Antioxidants (Basel) ; 10(6)2021 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-34199863

RESUMEN

Seminolipid (also known as sulfogalactosylglycerolipid-SGG), present selectively in male germ cells, plays important roles in spermatogenesis and sperm-egg interaction. The proper degradation of SGG in apoptotic germ cells is also as important. Sertoli cells first phagocytose apoptotic germ cells, then Sertoli lysosomal arylsulfatase A (ARSA) desulfates SGG, the first step of SGG degradation. We have reported that aging male Arsa-/- mice become subfertile with SGG accumulation in Sertoli cell lysosomes, typical of a lysosomal storage disorder (LSD). Since reactive oxygen species (ROS) levels are increased in other glycolipid-accumulated LSDs, we quantified ROS in Arsa-/- Sertoli cells. Our analyses indicated increases in superoxide and H2O2 in Arsa-/- Sertoli cells with elevated apoptosis rates, relative to WT counterparts. Excess H2O2 from Arsa-/- Sertoli cells could travel into testicular germ cells (TGCs) to induce ROS production. Our results indeed indicated higher superoxide levels in Arsa-/- TGCs, compared with WT TGCs. Increased ROS levels in Arsa-/- Sertoli cells and TGCs likely caused the decrease in spermatogenesis and increased the abnormal sperm population in aging Arsa-/- mice, including the 50% decrease in sperm SGG with egg binding ability. In summary, our study indicated that increased ROS production was the mechanism through which subfertility manifested following SGG accumulation in Sertoli cells.

15.
Genes Dev ; 35(9-10): 619-634, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888561

RESUMEN

Development of the ovary or testis is required to establish reproductive competence. Gonad development relies on key cell fate decisions that occur early in embryonic development and are actively maintained. During gonad development, both germ cells and somatic cells proliferate extensively, a process facilitated by cell cycle regulation. This review focuses on the Cip/Kip family of cyclin-dependent kinase inhibitors (CKIs) in mouse gonad development. We particularly highlight recent single-cell RNA sequencing studies that show the heterogeneity of cyclin-dependent kinase inhibitors. This diversity highlights new roles for cell cycle inhibitors in controlling and maintaining female fertility.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Fertilidad/genética , Gónadas/crecimiento & desarrollo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular/genética , Gónadas/metabolismo , Ratones , Procesos de Determinación del Sexo/genética , Análisis de la Célula Individual
16.
ACS Appl Mater Interfaces ; 13(19): 22391-22415, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33834768

RESUMEN

CO elimination through oxidation over highly active and cost-effective catalysts is a way forward for many processes of industrial and environmental importance. In this study, doped CeO2 with transition metals (TM = Cu, Co, Mn, Fe, Ni, Zr, and Zn) at a level of 20 at. % was tested for CO oxidation. The oxides were prepared using microwave-assisted sol-gel synthesis to improve catalyst's performance for the reaction of interest. The effect of heteroatoms on the physicochemical properties (structure, morphology, porosity, and reducibility) of the binary oxides M-Ce-O was meticulously investigated and correlated to their CO oxidation activity. It was found that the catalytic activity (per gram basis or TOF, s-1) follows the order Cu-Ce-O > Ce-Co-O > Ni-Ce-O > Mn-Ce-O > Fe-Ce-O > Ce-Zn-O > CeO2. Participation of mobile lattice oxygen species in the CO/O2 reaction does occur, the extent of which is heteroatom-dependent. For that, state-of-the-art transient isotopic 18O-labeled experiments involving 16O/18O exchange followed by step-gas CO/Ar or CO/O2/Ar switches were used to quantify the contribution of lattice oxygen to the reaction. SSITKA-DRIFTS studies probed the formation of carbonates while validating the Mars-van Krevelen (MvK) mechanism. Scanning transmission electron microscopy-high-angle annular dark field imaging coupled with energy-dispersive spectroscopy proved that the elemental composition of dopants in the individual nanoparticle of ceria is less than their composition at a larger scale, allowing the assessment of the doping efficacy. Despite the similar structural features of the catalysts, a clear difference in the Olattice mobility was also found as well as its participation (as expressed with the α descriptor) in the reaction, following the order αCu > αCo> αMn > αZn. Kinetic studies showed that it is rather the pre-exponential (entropic) factor and not the lowering of activation energy that justifies the order of activity of the solids. DFT calculations showed that the adsorption of CO on the Cu-doped CeO2 surface is more favorable (-16.63 eV), followed by Co, Mn, Zn (-14.46, -4.90, and -4.24 eV, respectively), and pure CeO2 (-0.63 eV). Also, copper compensates almost three times more charge (0.37e-) compared to Co and Mn, ca. 0.13e- and 0.10e-, respectively, corroborating for its tendency to be reduced. Surface analysis (X-ray photoelectron spectroscopy), apart from the oxidation state of the elements, revealed a heteroatom-ceria surface interaction (Oa species) of different extents and of different populations of Oa species.

17.
Mol Cell Endocrinol ; 526: 111193, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33610643

RESUMEN

Evidence is presented for expression of the insulin receptor on the surface of mammalian spermatozoa as well as transcripts for the receptor substrate adaptor proteins (IRS1-4) needed to mediate insulin action. Exposure to this hormone resulted in insulin receptor phosphorylation (pTyr972), activation of AKT (pSer473) and the stimulation of sperm motility. Intriguingly, the male germ line is also shown to be capable of generating insulin, possessing the relevant mRNA transcript and expressing strong immunocytochemical signals for both insulin and C-peptide. Insulin could be released from the spermatozoa by sonication in a concentration-dependent manner but was not secreted in response to glucose, fructose or stimulation with progesterone. However, insulin release could be induced by factors present in human uterine lavages. Furthermore, the endometrium was also shown to possess the machinery for insulin production and action (mRNA, insulin, C-peptide, proprotein convertase and insulin receptor), releasing insulin into the uterine lumen prior to ovulation. These studies emphasize the fundamental importance of extra-pancreatic insulin in regulating the reproductive process, particularly in the support of spermatozoa on their perilous voyage to the site of fertilization.


Asunto(s)
Insulina/biosíntesis , Páncreas/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Animales , Péptido C/metabolismo , Supervivencia Celular , Endometrio/metabolismo , Epitelio/metabolismo , Femenino , Células Germinativas/metabolismo , Humanos , Proteínas Sustrato del Receptor de Insulina/metabolismo , Secreción de Insulina , Masculino , Mamíferos/metabolismo , Ratones , Isoformas de Proteínas/metabolismo , Ratas , Receptor de Insulina/metabolismo , Útero/metabolismo
18.
RSC Adv ; 11(15): 8569-8584, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35423403

RESUMEN

The present study provides, for the first time in the literature, a comparative assessment of the catalytic performance of Ni catalysts supported on γ-Al2O3 and γ-Al2O3 modified with La2O3, in a continuous flow trickle bed reactor, for the selective deoxygenation of palm oil. The catalysts were prepared via the wet impregnation method and were characterized, after calcination and/or reduction, by N2 adsorption/desorption, XRD, NH3-TPD, CO2-TPD, H2-TPR, H2-TPD, XPS and TEM, and after the time-on-stream tests, by TGA, TPO, Raman and TEM. Catalytic experiments were performed between 300-400 °C, at a constant pressure (30 bar) and different LHSV (1.2-3.6 h-1). The results show that the incorporation of La2O3 in the Al2O3 support increased the Ni surface atomic concentration (XPS), affected the nature and abundance of surface basicity (CO2-TPD), and despite leading to a drop in surface acidity (NH3-TPD), the Ni/LaAl catalyst presented a larger population of medium-strength acid sites. These characteristics helped promote the SDO process and prevented extended cracking and the formation of coke. Thus, higher triglyceride conversions and n-C15 to n-C18 hydrocarbon yields were achieved with the Ni/LaAl at lower reaction temperatures. Moreover, the Ni/LaAl catalyst was considerably more stable during 20 h of time-on-stream. Examination of the spent catalysts revealed that both carbon deposition and degree of graphitization of the surface coke, as well as, the extent of sintering were lower on the Ni/LaAl catalyst, explaining its excellent performance during time-on-stream.

19.
Front Endocrinol (Lausanne) ; 11: 581838, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101214

RESUMEN

Despite the high prevalence of male infertility, very little is known about its etiology. In recent years however, advances in gene sequencing technology have enabled us to identify a large number of rare single point mutations responsible for impeding all aspects of male reproduction from its embryonic origins, through the endocrine regulation of spermatogenesis to germ cell differentiation and sperm function. Such monogenic mutations aside, the most common genetic causes of male infertility are aneuploidies such as Klinefelter syndrome and Y-chromosome mutations which together account for around 20-25% of all cases of non-obstructive azoospermia. Oxidative stress has also emerged as a major cause of male fertility with at least 40% of patients exhibiting some evidence of redox attack, resulting in high levels of lipid peroxidation and oxidative DNA damage in the form of 8-hydroxy-2'-deoxyguanosine (8OHdG). The latter is highly mutagenic and may contribute to de novo mutations in our species, 75% of which are known to occur in the male germ line. An examination of 8OHdG lesions in the human sperm genome has revealed ~9,000 genomic regions vulnerable to oxidative attack in spermatozoa. While these oxidized bases are generally spread widely across the genome, a particular region on chromosome 15 appears to be a hot spot for oxidative attack. This locus maps to a genetic location which has linkages to male infertility, cancer, imprinting disorders and a variety of behavioral conditions (autism, bipolar disease, spontaneous schizophrenia) which have been linked to the age of the father at the moment of conception. We present a hypothesis whereby a number of environmental, lifestyle and clinical factors conspire to induce oxidative DNA damage in the male germ line which then triggers the formation de novo mutations which can have a major impact on the health of the offspring including their subsequent fertility.


Asunto(s)
Aberraciones Cromosómicas , Predisposición Genética a la Enfermedad , Infertilidad Masculina/etiología , Estrés Oxidativo , Humanos , Infertilidad Masculina/patología , Masculino
20.
Mol Cell Proteomics ; 19(11): 1860-1875, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839225

RESUMEN

After ejaculation, mammalian spermatozoa must undergo a process known as capacitation in order to successfully fertilize the oocyte. Several post-translational modifications occur during capacitation, including sialylation, which despite being limited to a few proteins, seems to be essential for proper sperm-oocyte interaction. Regardless of its importance, to date, no single study has ever identified nor quantified which glycoproteins bearing terminal sialic acid (Sia) are altered during capacitation. Here we characterize sialylation during mouse sperm capacitation. Using tandem MS coupled with liquid chromatography (LC-MS/MS), we found 142 nonreductant peptides, with 9 of them showing potential modifications on their sialylated oligosaccharides during capacitation. As such, N-linked sialoglycopeptides from C4b-binding protein, endothelial lipase (EL), serine proteases 39 and 52, testis-expressed protein 101 and zonadhesin were reduced following capacitation. In contrast, mitochondrial aconitate hydratase (aconitase; ACO2), a TCA cycle enzyme, was the only protein to show an increase in Sia content during capacitation. Interestingly, although the loss of Sia within EL (N62) was accompanied by a reduction in its phospholipase A1 activity, a decrease in the activity of ACO2 (i.e. stereospecific isomerization of citrate to isocitrate) occurred when sialylation increased (N612). The latter was confirmed by N612D recombinant protein tagged with both His and GFP. The replacement of Sia for the negatively charged Aspartic acid in the N612D mutant caused complete loss of aconitase activity compared with the WT. Computer modeling show that N612 sits atop the catalytic site of ACO2. The introduction of Sia causes a large conformational change in the alpha helix, essentially, distorting the active site, leading to complete loss of function. These findings suggest that the switch from oxidative phosphorylation, over to glycolysis that occurs during capacitation may come about through sialylation of ACO2.


Asunto(s)
Aconitato Hidratasa/antagonistas & inhibidores , Asparagina/metabolismo , Glucólisis , Ácido N-Acetilneuramínico/metabolismo , Fosforilación Oxidativa , Capacitación Espermática , Espermatozoides/metabolismo , Aconitato Hidratasa/química , Acrosoma/enzimología , Acrosoma/metabolismo , Animales , Cromatografía Liquida , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Inmunohistoquímica , Lipasa/metabolismo , Masculino , Ratones , Simulación del Acoplamiento Molecular , Ácido N-Acetilneuramínico/química , Procesamiento Proteico-Postraduccional , Espermatozoides/enzimología , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...